Identification of Dian Ji Xue Teng (*Kadsura interior*) with DNA barcodes

Hao-Jie Guo^a, Xi-Wen Li^b, Yao-Dong Qi^a, Xue-Ping Wei^a, Ben-Gang Zhang^a and Hai-Tao Liu^a*

^a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100193, China ^b Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China

*Correspondence: Hai-Tao Liu, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. E-mail: htliu0718@126.com

ABSTRACT

Objective: To identify Kadsura interior (Dian Ji Xue Teng, Schisandraceae) by using DNA barcoding.

Methods: We analyzed five DNA barcodes (ITS, ITS2, *psbA-trnH*, *matK* and *rbcL*) using DNA barcoding in terms of distance-based, tree-based and character-based identification to distinguish *Kadsura interior* and its adulterants.

Results: In distance-based and tree-based identification, *K. interior* could be distinguished easily from the species of *Schisandra* and *K. coccinea*. In character-based identification, there are two single nucleotide polymorphisms (SNPs) in ITS and one SNP in *psbA-trn*H which can be used to distinguish *K. interior* from *K. heteroclita* and *K. longipedunculata*.

Conclusion: The results indicate that DNA barcoding can be used to identify *K. interior*. ITS and *psbA-trn*H sequence can be the most ideal DNA barcode for discriminating *K. interior* and its adulterants by the combination analysis of distance-based, tree-based and character-based identification (SNPs).

Key words: DNA barcoding, Schisandraceae, SNP, Kadsura interior Received 30 May 2016; Accept 13 March 2017

Introduction

Kadsura interior A. C. Smith, a species of Kadsura (Schisandraceae), is mainly distributed in the southwest of Yunnan Province^[1]. Before being recorded in Chinese Pharmacopoeia in 2010, the lianas of K. interior had been used as fork herb since two hundred years ago, called Dian Ji Xue Teng, for treating menstrual irregularities, blood deficiencies, and other feminine disorders^[2-4]. Modern studies also show that some dibenzocyclooctadiene lignans in K. interior have the efficacy of antitumor and anti-HIV^[5-7]. Morphologically, it is difficult to distinguish this species from another species K. heteroclita, medicinal named Di Xue Xiang, which is usually used for the treatment of rheumatism, punch injury, dysmenorrhea and gastroenteritis^[8,9]. Although Law^[1] considered they were separate species by distinguishing flower characters, Saunders Richard^[10] and Lin^[11] believed that there were continuous variation on the size of perianth and the numbers of carpels, so they should be combined into one species^[10]. In order to identify the medicine herbs "Xue Teng" by molecular sequences, Zhou et al. chose psbA-trnH for distinguishing eight species^[12]. Although they found a stabilized single nucleotide polymorphism (SNP), SNPs as potential tool to distinguish K. interior from K. heteroclita could not be further analyzed because of poor samples of K. heteroclita. In addition, Zhang et al. investigated the discriminatory power of four commonly used DNA barcodes (ITS, psbA-trnH, matK, and rbcL) for Chinese medicinal plants of the family Schisandraceae and exposed *K. heteroclita* and *K. longipedunculata* could not be discriminated by four commonly used DNA barcodes^[13].

DNA barcoding identification technology, a method using relatively short DNA to identify species, is an effective supplement to the traditional identification methods because of its repeatability, convenience and less necessary professional experience in identifying practice^[14-19]. However, previous studies of DNA barcoding have not effectively resolved the problem of identifying *K. interior*. In this study, we surveyed 21 populations representing seven Schisandraceae species and obtained the four DNA barcodes (ITS, *matK*, *psbA-trn*H and *rbcL*). Through DNA barcoding analysis, we try to establish a standard identification method for *K. interior*.

Materials and methods

1 Plant materials

64 samples of seven Schisandraceae species were collected from Sichuan, Chongqing, Guizhou, etc. (Table 1). The specimens were collected from the wild, taxonomically identified using Flora Republicae Popularis Sinicae and verified by Zhang Benggang who was a professor in Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College. Leaf material of each sample was dried in silica gel for DNA extraction. *Illicium micranthum*, a member of *Illicium* (a sister group of *Schisandra* and *Kadsura*) was selected as an outgroup for tree-based analyses. The conducted research is not related to either human or animals use.

Species	Collection number	Tites	Date	
K. longipedunculata	2015082801, 2015082903, 2015083102 2015090602, 2015090604	Nanchuan, Chongqin Emei, Sichuan Guiyang, Guizbou	2015.8.29 2015.8.31	
	2015090801, 2015090802, 2015090803, 2015090804, 2015090805, 2015090806, 2015090807, 2015090808, 2015090809, 2015091001, 2015091002, 2015091101, 2015091102, 2015091103	Leishan, Guizhou	2015.9.8	
	2015091801, 2015091802	Baojing, Hunan	2015.9.18	
	2015092301, 2015092302, 2015092303, 2015092306, 2015092307, 2015092309, 2015092310	Xingan, Guangxi	2015.9.23	
K. heteroclita	2015091201	Jianhe, Guizhou	2015.9.12	
	2015091803, 2015091804	Baojing, Hunan	2015.9.18	
	2015092104, 2015092105, 2015092106	Jinxiu, Guangxi	2015.9.21	
	2015082902	Nanchuan, Chongqin		
	2015090202, 2015090203, 2015090204A, 2015090204B, 2015090208	Emei, Sichuan		
K. coccinea	2015082901	Nanchuan, Chongqin	2015.8.29	
	2015083101	Emei, Sichuan	2015.8.31	
	2015090502	Guiyang, Guizhou	2015.9.5	
	2015091601	Huaihua, Hunan	2015.9.16	
	2015092304	Xingan, Guangxi	2015.9.23	
K. interior	2015121202, FQ001, FQ2016080601, FQ2016080602, FQ2016080603, FQ2016080604, FQ2016080605, FQ2016080606, FQ2016080607, FQ2016080608	Fengqin, Yunnan	2014-2016	
S. rubriflora	2015090102, 2015090103, 2015090104, 2015090201	Emei, Sichuan	2015.9.1	
S. propingua	2015083103, 2015083105	Emei, Sichuan	2015.8.31	
S. henryi	2015090209	Emei, Sichuan	2015.9.2	
-	2015090601, 2015090603	Guiyang, Guizhou	2015.9.5	
I. micranthum	2015090207	Emei, Sichuan	2015.9.2	

Table 1. The collection information of the Schisandraceae samples.

2 DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted from dry leaves stored in silica gel and from herbal medicines using the Plant Genomic DNA Kit (Tiangen, Beijing, China) according to the manufacturer protocol. Polymerase chain reaction (PCR) amplification of the targeted DNA regions was performed using $2 \times Taq$ PCR MasterMix (Aidlab Biotechnologies Co. Ltd., Beijing, China), which contained 0.05 u/µL of Taq DNA Polymerase, 4 mM MgCl₂, 0.4 mM of dNTP and reaction buffer. The PCR mix included 12.5 µL $2 \times Taq$ PCR MasterMix, 1 µL each primer (5 µM), 2 µL template DNA and 8.5 µL distilled or deionized water to give a final volume of 25 µL. The primer information and optimal PCR conditions were obtained from previous studies^[19,20]. PCR products were examined by electrophoresis using 1% agarose gels and sequenced in both directions by sequencing company.

3 Data analysis

The quality estimation and assembly for the newly generated sequences were performed with Codon Code Aligner 5.1.5 (CodonCode Corp., Dedham, MA, USA). All the newly acquired sequences were confirmed via BLASTn (http://blast.ncbi.nlm.nih. gov/Blast.cgi) and stored in Genkbank with accession numbers (Table S1). The lianas of some *Schisandra* species are also used as herbal medicines and neither *Schisandra* nor *Kadsura* is monophyletic^[21]. So the four DNA barcodes (ITS, *matK*, *psbA-trn*H and *rbcL*) of the *Schisandra* liana herbs were filtered

and downloaded from the database of Genbank (Table 2). None of *Kadsura* sequences was downloaded from the database of Genbank because we had enough samples of *Kadsura* and problems of identification might exist in *Kadsura* sequences of Genbank due to taxonomic debate^[22]. The sequence alignment for each locus was initially performed using ClustalW. Genetic distances and maximum-likelihood (ML) phylogenetic tree for each DNA region were calculated using MEGA v6.06^[23]. The software BioEdit was used to analyze single nucleotide polymorphism (SNP)^[24].

Results and analysis

1 Sequence information and distance-based analysis

Totally, we obtained 79 ITS, 79 ITS2, 74 *mat*K, 74 *rbc*L, 76 *psbA-trn*H and 63 I-K-A-L (the combination of ITS, matK, *psbA-trn*H and rbcL) sequences and analyzed the intra- and inter-specific distances for *K. interior* (Table 3). The lengths of ITS, ITS2, *mat*K, *psbA-trn*H and *rbc*L were 671, 228, 729, 455 and 525 bp after sequence alignment, respectively. The GC average contents of ITS, ITS2, *mat*K, *psbA-trn*H and *rbc*L were 55.49%, 60.50%, 34.92%, 34.07% and 44.45%, respectively. The intra- and inter-specific distances for *K. interior* were calculated by MEGA v5.05 based on the p-distance model (Table 3). The intra- specific distances for *K. interior* was (0.000±0.000) among all of the DNA barcodes except *psbA-trn*H (0.0030 ±0.0030). The inter-specific distances of *rbc*L had no significant

Table 2. Accession numbers of GenBank database.

Barcode	Species	Accession number
ITS	S. bicolor	DQ342255, KP689681, KP689682
	S. propinqua	JF978530, JF978531
	S. sphenanthera	KP689644, KP689645, KP689646, KP689647, KP689648
	S. viridis	AF163703, AF263438, JF978539, JF978540, KP689643
matK	S. bicolor	GQ248198, KP689790, KP689791
	S. propinqua	JF956216, JF956217
	S. sphenanthera	KP689752, KP689753, KP689754, KP689755, KP689756
psbA-trnH	S. bicolor	KP690009, KP690010
	S. propinqua	JN047088
	S. sphenanthera	KP689971, KP689972, KP689973, KP689974, KP689975
	S. viridis	JN047097, JN047098
rbcL	S. bicolor	KP689899, KP689900
	S. propinqua	JF944186, JF944187
	S. sphenanthera	KP689861, KP689862, KP689863, KP689864, KP689865

difference. Among ITS2, ITS, *matK*, *psbA-trn*H and I-K-A-L, the inter-specific distance between *K. interior* and *K. heteroclita* was significantly lower than other groups. The same pattern also showed in the inter-specific distances between *K. interior* and *K. longipedunculata.* Based on the intra- and inter-specific distances, the close relationships between *K. interior*, *K. heteroclita* and *K. longipedunculata* can be infered.

2 Tree-based identification

Maximum-likelihood (ML) phylogenetic tree was established to analyze the genetic relationships among species. The ML tree of the combination of ITS, *psbA-trnH*, *matK*, and *rbcL* was presented in Fig. 1 and all the other phylogenetic trees were shown in Fig S1. Samples of *K. interior*, *K. heteroclita* and *K. longipedunculata* were so many that only haplotypes were used for tree-based identification. There were four major clusters (Cluster 1, Cluster 2, Cluster 3 and Cluster 4) in the combination ML tree. Cluster 1 contained *K. interior*, *K. heteroclita* and *K. longipedunculata*. Cluster 2 and Cluster 3 corresponded to *K. coccinea* and *S. propinqua*, respectively. Cluster 4 contained some species of *Schisandra*. The same pattern also showed in the ML trees obtained from other single markers except *rbcL*, in which *S. propinqua* nested in Cluster 1. A monophyletic cluster with 94% bootstrap values was combined with *K. interior* in Cluster 1. Among five commonly used barcodes, the monophyletic cluster of *K. interior* was strongly supported with maximum bootstrap values (96%) in ITS ML tree. In comparison, samples of *K. interior* were not monophyletic in *mat*K and *rbcL* ML tree.

3 Character-based identification

For species identification of Schisandraceae, character-based identification has been evaluated by Zhang et al^[13]. According to the ML tree (Fig. 1) and the between group distances for K. interior (Table 3), we found that K. interior could be distinguished easily from Schisandra and K. coccinea. In contrast, K. interior had very close relationship with K. heteroclita and K. longipedunculata. Therefore, 10 samples of K. interior, 12 samples of K. heteroclita and 28 samples of K. longipedunculata were used for character-based identification. One transition at position 651 and 2 bp indels at position 227 were detected in ITS and one transition was found in psbA-trnH at position 218. These SNPs in psbA-trnH and ITS of K. interior, K. heteroclita and K. longipedunculata clearly separated these individuals into two sequence types, Type I contained individuals of K. interior and Type II contained individuals of K. heteroclita and K. longipedunculata (Table 4). Consequently, SNPs of ITS and psbA-trnH were capable to distinguish K. interior from K. heteroclita and K. longipedunculata.

Discussion

The lianas of *K. interior* are well-known traditional medicine accepted by Chinese Pharmacopoeia $2015^{[2]}$. The liana herbs were traditionally identified by morphological and microscopic methods, but subjective experience of user and fragmentary samples might influenced the efficiency and accuracy of

Fable 3. The intra- and inter-specific distances for <i>K. inter</i>

Species 2	ITS2	ITS	matK	psbA-trnH	rbcL	I-K-A-L
K. interior	0.000±0.000	0.000±0.000	0.000±0.000	0.003±0.003	0.000±0.000	0.000±0.000
K. heteroclita	0.011±0.005	0.006±0.002	0.000±0.000	0.007±0.005	0.006±0.003	0.003±0.001
K. longipedunculata	0.009±0.005	0.005±0.002	0.000±0.000	0.007±0.005	0.006±0.003	0.003±0.001
K. coccinea	0.034±0.012	0.031±0.007	0.015±0.004	0.102±0.019	0.006±0.003	0.027±0.004
S. henryi	0.044±0.013	0.032±0.006	0.016±0.005	0.025±0.010	0.008±0.004	0.020±0.003
S. propinqua	0.026±0.010	0.029±0.006	0.010±0.004	0.038±0.012	0.004±0.003	0.018±0.002
S. rubriflora	0.049±0.014	0.036±0.007	0.011±0.004	0.025±0.010	0.008±0.004	0.020±0.003
S. bicolor	0.035±0.012	0.030±0.006	0.014±0.004	0.020±0.009	0.008±0.004	
S. sphenanthera	0.050±0.013	0.036±0.007	0.010±0.004	0.025±0.010	0.008±0.004	
S. viridis	0.050±0.014	0.037±0.007		0.025±0.010		
	Species 2 K. interior K. heteroclita K. longipedunculata K. coccinea S. henyi S. propinqua S. rubriflora S. bicolor S. sphenanthera S. viridis	Species 2 ITS2 K. interior 0.000±0.000 K. heteroclita 0.011±0.005 K. longipedunculata 0.009±0.005 K. coccinea 0.034±0.012 S. henryi 0.044±0.013 S. propinqua 0.026±0.010 S. rubriflora 0.049±0.014 S. bicolor 0.035±0.012 S. sphenanthera 0.050±0.013 S. viridis 0.050±0.014	Species 2 ITS2 ITS K. interior 0.000±0.000 0.000±0.000 K. heteroclita 0.011±0.005 0.006±0.002 K. longipedunculata 0.009±0.005 0.005±0.002 K. coccinea 0.034±0.012 0.031±0.007 S. henryi 0.044±0.013 0.032±0.006 S. propinqua 0.026±0.010 0.029±0.006 S. rubriflora 0.049±0.014 0.036±0.007 S. bicolor 0.035±0.012 0.030±0.006 S. sphenanthera 0.050±0.013 0.036±0.007 S. viridis 0.050±0.014 0.037±0.007	Species 2 ITS2 ITS matK K. interior 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 K. heteroclita 0.011±0.005 0.006±0.002 0.000±0.000 K. longipedunculata 0.009±0.005 0.005±0.002 0.000±0.000 K. coccinea 0.034±0.012 0.031±0.007 0.015±0.004 S. henryi 0.044±0.013 0.032±0.006 0.010±0.004 S. propinqua 0.026±0.010 0.029±0.006 0.010±0.004 S. rubriflora 0.049±0.014 0.036±0.007 0.011±0.004 S. bicolor 0.035±0.012 0.030±0.006 0.014±0.004 S. sphenanthera 0.050±0.013 0.036±0.007 0.010±0.004	Species 2 ITS2 ITS matK psbA-tmH K. interior 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.003±0.003 K. heteroclita 0.011±0.005 0.006±0.002 0.000±0.000 0.007±0.005 K. longipedunculata 0.009±0.005 0.005±0.002 0.000±0.000 0.007±0.005 K. coccinea 0.034±0.012 0.031±0.007 0.015±0.004 0.102±0.019 S. henryi 0.044±0.013 0.032±0.006 0.016±0.005 0.025±0.010 S. propinqua 0.026±0.010 0.029±0.006 0.010±0.004 0.038±0.012 S. rubiflora 0.049±0.014 0.036±0.007 0.011±0.004 0.025±0.010 S. bicolor 0.035±0.012 0.030±0.006 0.014±0.004 0.020±0.009 S. sphenanthera 0.050±0.013 0.036±0.007 0.010±0.004 0.025±0.010 S. viridis 0.050±0.014 0.037±0.007 0.010±0.004 0.025±0.010	Species 2 ITS2 ITS matK psbA-trnH rbcL K. interior 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.003±0.003 0.000±0.000 K. heteroclita 0.011±0.005 0.006±0.002 0.000±0.000 0.007±0.005 0.006±0.003 K. longipedunculata 0.009±0.005 0.005±0.002 0.000±0.000 0.007±0.005 0.006±0.003 K. coccinea 0.034±0.012 0.031±0.007 0.015±0.004 0.102±0.019 0.006±0.003 S. henryi 0.044±0.013 0.032±0.006 0.016±0.005 0.025±0.010 0.008±0.004 S. propinqua 0.026±0.010 0.029±0.006 0.011±0.004 0.038±0.012 0.004±0.003 S. rubiflora 0.049±0.014 0.036±0.007 0.011±0.004 0.025±0.010 0.008±0.004 S. bicolor 0.035±0.012 0.030±0.006 0.014±0.004 0.020±0.009 0.008±0.004 S. sphenanthera 0.050±0.013 0.036±0.007 0.010±0.004 0.025±0.010 0.008±0.004 S. viridis 0.050±0.014 0.037±0.007 <

I-K-A-L: the combination of ITS, matK, psbA-trnH and rbcL. Blank space indicated that the sequences of species 2 was absent or the sequences downloaded from Genbank can not be sure whether extracted from same sample.

Figure 1. ML phylogenetic tree based on the combination of ITS, psbA-trnH, matK and rbcL. The tree includes seven species from Schisandra and Kadsura. Illicium micranthum is the outgroup. K. interior is labeled by red.

authentication^[25]. DNA barcoding is a new molecular marker technology, which is a mature technology with easy and universal operation, and has been widely used in the study and application, for instance, this technology has been better used in the authentication of liana herbs^[15,16,26]. In this study, we trialed five DNA barcodes by using distance-based, tree-based and character-based identification for distinguishing *K. interior* from the others.

Previous DNA barcoding studies revealed that *K. interior*, *K. heteroclita* and *K. longipedunculata* were hard to be distinguished although *K. interior* could be easily distinguished from other species of Schisandraceae^[12,13]. In particular, *K. interior* and *K. heteroclite* were grouped into one species in Flora of China^[27]. However, there are still some morphological differences between *K. longipedunculata*, *K. interior* and *K. heteroclite*. *K. longipedunculata* is easily distinguished from *K. interior* and *K. heteroclite* by having spherical androecium while *K. interior* and *K. heteroclite* have ellipsoidal androecium. *K. interior* is rare in China, only distributed at high elevations in the southwest of Yunnan Province. This species can be distinguished from *K. heteroclite* by having obvious filaments, petioles wings and dry leaf with same color on both sides^[1]. Moreover, we found that the fruits of *K. interior* were significantly bigger than that of

K. heteroclita through our field observations. Distinctiveness of *K. interior* was also supported by SNP analysis in this study (Table 4). Three SNPs were found to distinguish *K. interior* from *K. heteroclita* and *K. longipedunculata* in *psbA-trnH*, and ITS. 50 individuals of *K. interior*, *K. heteroclita* and *K. longipedunculata* were separated into two types via SNPs. *K. interior* belonged to Type I while *K. heteroclita* and *K. longipedunculata* were grouped into Type II.

In this study, the results supported that the combination of ITS, *psbA-trnH*, *matK* and *rbcL* could be the most ideal DNA barcode for discriminating the plants of *Schisandra* and *Kadsura* at genera level as Zhang et al. reported^[13]. However, the best DNA barcode for the species discrimination at the

Table 4. single nucleotide polymorphisms (SNPs) in *psbA-trn*H and ITS for *K. interior, K. heteroclita* and *K. longipedunculata*.

Туре	Taxa (n)	psbA-trnH		ITS	
Type I Type II	K. interior (10) K. heteroclita (12) K. longipedunculata (28)	218 A C C	227 C -	228 C - -	651 T C C

-- indicates indels. The number of individuals is shown in the parentheses.

genus level might not always be the most suitable for any species of the genus. For K. interior, K. heteroclita and K. longipedunculata, the combination of ITS, psbA-trnH, matK and rbcL showed lower resolution (Table 3, Fig. 1). Herein, we proposed ITS and psbA-trnH as the most ideal DNA barcodes for discriminating K. interior and its adulterants by the combination distance-based, tree-based and character-based identification. Besides, most authors believed that K. interior had very close relationship with K. heteroclita. Some studies also suggested that K. heteroclita and K. interior should be combined into one species by morphological characters^[10,11,27]. K. interior is mainly distributed in the southwest of Yunnan Province while K. heteroclita is widely distributed in south of China, e.g. Guizhou, Guangxi, Hubei, etc. Although the species combination might extend the sources of Dian Ji Xue Teng, it might lead to misuse in clinical practice because of ignorance of the difference between K. heteroclita and K. interior. This study implied that genetic variation existed between the closely related species K. interior and K. heteroclita. Therefore, more studies should be required for comparing K. heteroclita and K. interior in pharmacological and chemical aspects.

Acknowledgments

The authors thank Jiushi Liu and Li Luo for their help about sample collection. We are thankful to two anonymous reviewers for their critical reviews of the manuscript. This study was carried out with the support of the National Natural Science Foundation of China (Project No. 81373913).

Conflict of interest

All authors declare no conflict of interest.

References

- Academiae Sinicae Edita. Flora Republicae Popularis Sinicae. Beijing: Science Press 2004:232–267.
- 2. National Pharmacopoeia Committee. Chinese pharmacopoeia 2015. Beijing: China Medical Science Press 2015:362–363.
- Dong K, Pu JX, Du X, et al. Two new guaianolide-type sesquiterpenoids from Kadsura interior. *Chinese Chemical Letters* 2013;24(2): 111–113.
- Huang S, chen Z. Literature study of Da Xue Teng and Ji Xue Teng. Journal of Chinese Medicinal Materials 1984;5(6):49–50.
- Chen DF, Zhang SX, Xie L, et al. Anti-aids agents—XXVI. Structureactivity correlations of Gomisin-G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. *Bioorganic & Medicinal Chemistry* 1997;5(8):1715–1723.
- Chen DF, Zhang SX, Chen K, et al. Two New Lignans, Interiotherins A and B, as Anti-HIV Principles from Kadsura interior. *Journal of Natural Products* 1996;59(11):1066–1068.
- 7. Chen DF, Zhang SX, Kozuka M, et al. Interiotherins C and D, Two New Lignans from Kadsura interior and Antitumor-Promoting Effects

of Related Neolignans on Epstein–Barr Virus Activation. *Journal of Natural Products* 2002;65(9):1242–1245.

- State Administration of traditional Chinese Medicine of the People's Republic of China. Chinese materia medica. Beijing: Science Press 1996:1709–1753.
- 9. Gao S, Guo H, Qi Y, et al. Discussion about The Original Plant of Dian Ji Xue Teng. *Journal of Chinese Medicinal Materials* 2015; 38(12):2644–2650.
- Saunders RMK. Monograph of Kadsura (Schisandraceae). Systematic Botany Monographs 1998;54(1):1–106.
- 11. Lin Q. Taconomic Notes on Some Species of Kadsura (Schisandraceae). Bulletin of Botanical Research 2002;22(4):399–411.
- Zhong H, Ma S, Chen B, et al. Identification of Spatholobi Caulis, Kadsurae Caulis and Sargentodoxae Caulis Using The psbA-trnH Barcode. Modernization of Traditional Chinese Medicine and Materia Madica-World Science and Technology 2016;18(1):40–45.
- Zhang J, Chen M, Dong X, et al. Evaluation of four commonly used DNA barcoding Loci for chinese medicinal plants of the family schisandraceae. PLoS One 2015;10(5):1–21.
- Chen SL, Yao H, Han JP, et al. Principles for molecular identification of traditional Chinese materia medica using DNA barcoding. *China Journal of Chinese Materia Medica* 2013;38(02):141–148.
- Hebert PD, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes. Proc Biol Sci 2003;270(1512):313–321.
- Chen SL, Yao H, Han JP, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. *PLOS ONE* 2010;5(1):1–8.
- Chen SL, Pang XH, Song JY, et al. A renaissance in herbal medicine identification: from morphology to DNA. *Biotechnol Adv* 2014;32(7): 1237–1244.
- Chen SL, Pang XH, Yao H, et al. Identification System and Perspective for DNA Barcoding Traditional Chinese Materia Medica. *Modernization Of Traditional Chinese Medicine And Materia Medica-World Science And Technology* 2011;13(05):747–754.
- Chen SL. Molecular identification of DNA barcode in Chinese traditional medicine. Beijing: People's Medical Publishing House (PMPH) 2012: 494–495.
- Zheng SH, Li YK, Ren WG, et al. Molecular identification in genus of Lilium based on DNA barcoding. *Acta Pharmaceutica Sinica* 2014; 49(12):1730–1738.
- Wang YH, Zhang SZ, Gao JP, et al. Phylogeny of the Schisandraceae based on cpDNA mat-K and rpL16 intron data. *Chemistry & Biodiversity* 2006;3(3):359–369.
- Guo HJ, Qi YD, Li XW, et al. Progress of traditional application of Schisandraceae plants and the systematic research on them. *World Chinese Medicine* 2015;10(8):1133–1138.
- Tamura K, Stecher G, Peterson D, et al. Mega6: Molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol* 2013;30(12): 2725–2729.
- Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Sympo*sium Series 1999;41(41):95–98.
- Sun ZY, Zhang YQ. Identification of Vine Herbs Using DNA Barcoding Method. Modernization Of Traditional Chinese Medicine And Materia Medica-World Science And Technology 2012;14(05):2005–2009.
- Chen SL, Yao H, Song JY, et al. Use of DNA barcoding to identify Chinese medicinal materials. *Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology* 2007; 9(03):7–12.
- 27. Flora of China Edita. Flora of China. Beijing: Science Press 2013: 39–41.

Identification of Dian Ji Xue Teng (*Kadsura interior*) with DNA barcodes

Hao-Jie Guo^a, Xi-Wen Li^b, Yao-Dong Qi^a, Xue-Ping Wei^a, Ben-Gang Zhang^a and Hai-Tao Liu^a*

^a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100193, China ^b Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China

*Correspondence: Hai-Tao Liu, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. E-mail: htliu0718@126.com

ABSTRACT

Objective: To identify Kadsura interior (Dian Ji Xue Teng , Schisandraceae) by using DNA barcoding.

Methods: We analyzed five DNA barcodes (ITS, ITS2, *psbA-trnH*, *matK* and *rbcL*) using DNA barcoding in terms of distance-based, tree-based and character-based identification to distinguish *Kadsura interior* and its adulterants.

Results: In distance-based and tree-based identification, *K. interior* could be distinguished easily from the species of *Schisandra* and *K. coccinea*. In character-based identification, there are two single nucleotide polymorphisms (SNPs) in ITS and one SNP in *psbA-trn*H which can be used to distinguish *K. interior* from *K. heteroclita* and *K. longipedunculata*.

Conclusion: The results indicate that DNA barcoding can be used to identify the *K. interior*. The ITS and *psbA-trn*H sequence can be the most ideal DNA barcode for discriminating *K. interior* and its adulterants by the combination analysis of distance-based, tree-based and character-based identification (SNPs).

Key words: DNA barcoding, Schisandraceae, SNP, Kadsura interior

Kadsura_heteroclita_2015091803 Kadsura_heteroclita_2015092106 Kadsura_heteroclita_2015091804 86 Kadsura_heteroclita_201509202 Kadsura_heteroclita_201509202 Kadsura_heteroclita_2015092302 Kadsura_longipedunculata_2015092302 Kadsura_longipedunculata_2015092303 Kadsura_longipedunculata_2015092303 Kadsura_longipedunculata_2015092303 Kadsura_longipedunculata_2015092303 Kadsura_longipedunculata_2015092306 Kadsura_longipedunculata_2015092307 Kadsura_longipedunculata_2015092308 Kadsura_longipedunculata_2015092308 Kadsura_longipedunculata_201509801 Kadsura_longipedunculata_201509801 Kadsura_longipedunculata_201509801 Kadsura_longipedunculata_201509801 Kadsura_longipedunculata_201509803 Kadsura_longipedunculata_201509803 Kadsura_longipedunculata_201509803 Kadsura_longipedunculata_201509803 Kadsura_longipedunculata_201509803 Kadsura_longipedunculata_201509803 Kadsura_longipedunculata_201509803 Kadsura_longipedunculata_201509803 Kadsura_longipedunculata_201509803 Kadsura_longipedunculata_2015091001 Kadsura_interior_FQ2016080606 Kadsura_interior_FQ2016080606 Kadsura_interior_FQ2016080607 Kadsura_interior_FQ2016080608 Kadsura_interior_FQ2016080608 Kadsura_interior_FQ2016080601 Kadsura_interior_FQ2016080603 Kadsura_interior_FQ2016080603 Kadsura_interior_FQ2016080603 Kadsura_heteroclita_2015090203 Kadsura_heteroclita_2015090203 Kadsura_heteroclita_2015090203 Kadsura_heteroclita_2015090204 Kadsura_heteroclita_2015090208 Kadsura_heteroclita_2015090208 Kadsura_heteroclita_2015090208 Kadsura_heteroclita_2015090208 Kadsura_heteroclita_2015090208 Kadsura_longipedunculata_2015090604 Kadsura_longipedunculata_2015090604 Kadsura_longipedunculata_2015090604 Kadsura_longipedunculata_2015090007 Kadsura_coccinea_2015083101 Kadsura_coccinea_2015083103 Schisandra_propinqua_JF978531 Schisandra_propinqua_JF978531 Schisandra_propinqua_JF978531 Schisandra_propinqua_JF978531 Schisandra_propinqua_JF978531 Schisandra_propinqua_JF978531 Schisandra_propinqua_JF978531
Schisandra_viridis_AF263438 Schisandra_viridis_AF263438 Schisandra_viridis_JF978539 Schisandra_viridis_AF163703 Schisandra_sphenanthera_KP689644 Schisandra_sphenanthera_KP689647 Schisandra_sphenanthera_KP689645 Schisandra_sphenanthera_KP689646 Schisandra_rubriflora_2015090102 Schisandra_rubriflora_2015090104 Schisandra_rubriflora_2015090103 Schisandra_henryi_2015090601 Schisandra_henryi_2015090603

0.03

1

	Kadsura_longipedunculata_2015090805
	Kadsura_longipedunculata_2015090602
	Kadsura_longipedunculata_2015092306
mat K MI tree	Kadsura_longipedunculata_2015090808
	Kadsura longipedunculata 2015091002
	Kadsura longipedunculata 2015091105
	Kadsura longipedunculata 2015090803
	Kadsura_longipedunculata_2015091102
	Kadsura_interior_FQ2016080604
	Kadsura_longipedunculata_2015090802
	Kadsura_interior_2015121202
	Kadsura_longipedunculata_2015090801
	Kadsura_heteroclita_2015092106
	Kadsura_helerocilia_2015091804
	Kadsura longipedunculata 2015090600
	Kadsura longipedunculata 2015092310
	Kadsura longipedunculata 2015092302
	Kadsura_heteroclita_2015090204A
	Kadsura_heteroclita_2015090204B
	Kadsura_heteroclita_2015092104
	Kadsura_longipedunculata_2015082903
	Kadsura_interior_EC2016090602
	Kadeura longingdungulata 2015001901
	Kadsura_longipedunculata_2015091601
	Kadsura longinedunculata 2015091802
	Kadsura_heteroclita_2015090208
	Kadsura heteroclita 2015091201
	Kadsura_longipedunculata_2015090604
	Kadsura_interior_FQ2016080608
	Kadsura_longipedunculata_2015091001
	Kadsura_longipedunculata_2015083102
84	Kadsura_interior EO2016080607
Г	Kadsura_Interior_FQ2010000007
	Kadsura longinedunculata 2015092309
	Kadsura interior FQ2016080603
	Kadsura_interior_FQ2016080606
	Kadsura_longipedunculata_2015092301
	Kadsura_longipedunculata_2015092307
	Kadsura_heteroclita_2015090202
	Kadsura_interior_FQ2016080605
	Kadsura_Interior_FQ001
	Kadsura longinedunculata 2015082801
	Kadsura heteroclita 2015090203
	Kadsura longipedunculata 2015091103
	Kadsura_longipedunculata_2015090804
	Kadsura_coccinea_2015083101
	100 Kadsura_coccinea_2015082901
	91 Kadsura_coccinea_2015091001
	Schisandra henryi 2015090601
	Schisandra henryi 2015090209
	Schisandra_henryi_2015090603
	Schisandra_rubriflora_2015090104
	Schisandra_rubriflora_2015090201
	⁸³ Schisandra_rubriflora_2015090102
	Schisandra_rubritiora_2015090103
1	Schisandra sphenanthera KP680755
	<u>96</u> <u>82</u> Schisandra sphenanthera KP689756
	Schisandra sphenanthera KP689753
	Schisandra sphenanthera KP689752
	⁹⁵ Schisandra_bicolor_KP689791
-	Schisandra_bicolor_KP689790
	Schisandra_propinqua_2015083105
	100 Schisandra_propingua_JF956216
	Schisandra_propingua_2015083103
L,	llicium micranthum 2015090207

www.wjtcm.org

Kadsura_longipedunculata_2015083102

*rbc*L ML tree

0.004

Table S1. A	ccession	numbers	of four	DNA	barcodes	sequenced	in t	his study.

				Accessio	ssion number	
Species name	Collection number	ITS	matK	psbA-trnH	rbcL	
Illicium micranthum	2015090207	KY884723	KY884788	KY884853	KY884918	
K. coccinea	2015082901	KY884724	KY884789	KY884854	KY884919	
K. coccinea	2015083101	KY884725	KY884790	KY884855	KY884920	
K. coccinea	2015090502	KY884726	KY884791	KY884856	KY884921	
K. coccinea	2015091601	KY884/2/	KY884792	KY884857	KY884922	
K. COCCINEd K. botoroclita	2015092304	K1884/28	K1884/93	N 1 884838 VV 994950	K1884923	
K. heteroclita	2015090202	KY884730	- KY884813	KY884860	KY884925	
K. heteroclita	2015090203	KY884731	KY884814	KY884861	KY884926	
K. heteroclita	2015090204A	KY884732	KY884815	KY884862	KY884927	
K. heteroclita	2015090204B	KY884733	KY884816	KY884863	KY884928	
K. heteroclita	2015090208	KY884734	KY884817	KY884864	KY884929	
K. heteroclita	2015091201	KY884735	KY884794	KY884865	KY884930	
K. heteroclita	2015091803	KY884736	KY884795	KY884866	KY884931	
K. heteroclita	2015091804	KY884/3/	KY884/96	KY884867	KY884932	
K. neteroclita K. hotoroclita	2015092104	KY884/38	KY884/9/	KY884868	KY884933	
K. heteroclita	2015092105	K 1004739 K V 88/17/10	K 1004790 K V 887799	K 1 004009 K V 88/1870	KV88/1935	
K interior	2015121202	KY884742	KY884800	KY884871	KY884936	
K. interior	FQ001	KY884743	KY884801	KY884872	KY884937	
K. interior	FQ2016080601	KY884744	KY884802	KY884873	KY884938	
K. interior	FQ2016080602	KY884745	KY884803	KY884874	KY884939	
K. interior	FQ2016080603	KY884746	KY884804	KY884875	KY884940	
K. interior	FQ2016080604	KY884747	KY884805	KY884876	KY884941	
K. interior	FQ2016080605	KY884748	KY884806	KY884877	KY884942	
K. interior	FQ2016080606	KY884749	KY884807	KY884878	KY884943	
K. Interior	FQ2016080607	K Y 884750 V V 994751	K 1884808	KY884879	K 1884944	
K. Interior	FQ2010080008	KT004751 KV88/752	K 1004009 K V 88/810	K 1 00400U K V 88/1881	K1004945 KV88/19/16	
K. longipedunculata	2015082903	KY884753	KY884811	KY884882	KY884947	
K. longipedunculata	2015083102	KY884754	KY884812	KY884883	KY884948	
K. longipedunculata	2015090602	KY884755	KY884818	KY884884	KY884949	
K. longipedunculata	2015090604	KY884756	KY884819	KY884885	KY884950	
K. longipedunculata	2015090801	KY884757	KY884820	KY884886	KY884951	
K. longipedunculata	2015090802	KY884758	KY884821	KY884887	KY884952	
K. longipedunculata	2015090803	KY884759	KY884822	KY884888	KY884953	
K. longipedunculata	2015090804	KY884760	KY884823	KY884889	KY884954	
K. longipedunculata	2015090805	K 1884701 KV884762	K 1884824 KV88/825	K 1884890 KV88/891	K1884955 KV884956	
K. longipedunculata	2015090807	KY884763	KY884826	KY884892	KY884957	
K. longipedunculata	2015090808	_	KY884827	KY884893	KY884958	
K. longipedunculata	2015090809	KY884764	KY884828	KY884894	KY884959	
K. longipedunculata	2015091001	KY884765	KY884829	KY884895	KY884960	
K. longipedunculata	2015091002	KY884766	KY884830	KY884896	KY884961	
K. longipedunculata	2015091101	KY884767	KY884831	KY884897	KY884962	
K. longipedunculata	2015091102	KY884768	KY884832	KY884898	KY884963	
K. longipedunculata	2015091103	KY884769	KY884833	KY884899	KY884964	
K. longipedunculata	2015091801	K 1004770 K V 88/1771	KV88/836	KY88/900	KV88/966	
K. longipedunculata	2015097802	KY884772	KY884837	KY884907	KY884967	
K. longipedunculata	2015092302	KY884773	KY884838	KY884903	KY884968	
K. longipedunculata	2015092303	KY884774	KY884839	KY884904	KY884969	
K. longipedunculata	2015092306	KY884775	KY884840	KY884905	KY884970	
K. longipedunculata	2015092307	KY884776	KY884841	KY884906	KY884971	
K. longipedunculata	2015092309	KY884777	KY884842	KY884907	KY884972	
K. longipedunculata	2015092310	KY884778	KY884843	KY884908	KY884973	
S. henryi	2015090209	KY884779	KY884844	KY884909	KY884974	
s. neniyi S. bonni	2015090601	⊾ĭŏö4/ŏU kvoo <i>n</i> 701	NYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	N I 8849 I U KV997011	KI0849/5	
S. neniyi S. propingua	2015090005	KY884787	KY884847	KY884917	KY884970	
S. propingua	2015083105	KY884783	KY884848	KY884913	KY884978	
S. rubriflora	2015090102	KY884784	KY884849	KY884914	KY884979	
S. rubriflora	2015090103	KY884785	KY884850	KY884915	KY884980	
S. rubriflora	2015090104	KY884786	KY884851	KY884916	KY884981	
S. rubriflora	2015090201	KY884787	KY884852	KY884917	KY884982	
