Investigation of Radix Achyranthis Bidentatae Phytochemistry and Pharmacology

Liu Yang^a, A-Jiao Hou^a, Mei-Ling Yan^a, Xu-Dong Xing^a, Xin-Yue Guo^a, Hai Jiang^a, Bing-You Yang^a, Kelvin Chan^{c,d}, Qiu-Hong Wang^{a,b}, Hai-Xue Kuang^a

^aKey Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, ^bSchool of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China, ^cCentre for Complementary Medicine Research and ^aFaculty of Pharmacy, The University of Sydney, NSW, Australia

Abstract

Radix achyranthis bidentatae (RAB), a member of the *Amaranthaceae* family, has been widely used in Traditional Chinese Medicine for 1000s of years. Increasing interest in RAB-derived medicinal has led to the discovery of additional triterpenoid saponins, phytoecdysones, polysaccharides, and many other compounds, as well as investigations into their pharmacology. A large number of pharmacological studies have shown RAB and its active components possess a range of pharmacological activities, including anti-tumor, anti-fertility, anti-senile, and anti-inflammatory effects. This review is an up-to-date summary and synthesis of the uses of RAB from phytochemical and pharmacological perspectives.

Keywords: Pharmacology, phytoecdysones, polysaccharides, radix achyranthis bidentatae, triterpenoid saponins

INTRODUCTION

Radix achyranthis bidentatae (RAB), known as Niuxi in Chinese, is derived from the dried roots of *Achyranthes bidentata* Bl and is a well-known Traditional Chinese Medicine (TCM). This plant is cultivated from different provinces of China, including Henan, Shanxi, Shandong, and Jiangsu, and used in folk medicine. In the Chinese Pharmacopoeia (2015 Edition), RAB is used in the treatment of osteodynia of the lumbar and knees, spasms, and limb flaccidity.

Currently, the traditional uses of RAB have been largely expanded on. Experimental studies indicate RAB possesses a number of pharmacological activities, including anti-tumor,^[1] immunostimulant,^[2,3] uteri-excitant, anti-fertility,^[4,5] anti-bacterial,^[6] anti-inflammatory,^[7] cognition-enhancing,^[8] anti-senile,^[9,10] and anti-osteoporosis^[11-13] properties. In terms of treatment, RAB has been used to influence carbohydrate metabolism in the blood,^[14,15] hasten growth,^[16] and improve the dual modulatory function of the immune system.^[17,18]

In general, the curative effects of TCMs are due to the synergy of many bioactive compounds.^[19,20] Chemically, RAB has been extensively studied, triterpenoid saponins,^[21,22] phytoecdysones,^[23,24] and polysaccharides have been isolated and identified as the main components of RAB.

Access this article online					
Quick Response Code:	Website: www.wjtcm.net				
	DOI: 10.4103/wjtcm.wjtcm_25_18				

While this plant has been well-studied in China, a significant amount of information on RAB that has been collected by scientists is not available to the international community because many of the scientific articles have only been published in Chinese. Therefore, it is necessary to summarize and present research articles on RAB in English.

This review summarizes the phytochemical composition and pharmacological effects of RAB. It aims to provide a consolidated platform for further study of this plant to better guide clinical applications and sustainable utilization of medicinal resources.

> Address for correspondence: Prof. Hai-Xue Kuang, Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China. E-mail: hxkuang56@163.com Prof. Qiu-Hong Wang, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 528458, China. E-mail: qhwang668@sina.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

© 2019 World Journal of Traditional Chinese Medicine | Published by Wolters Kluwer - Medknow

Received: 14-09-2018, Accepted: 05-11-2018

How to cite this article: Yang L, Hou AJ, Yan ML, Xing XD, Guo XY, Jiang H, *et al.* Investigation of radix achyranthis bidentatae phytochemistry and pharmacology. World J Tradit Chin Med 2019;5:50-60.

Phytochemistry

Several different classes of compounds, primarily triterpenoid saponins, phytoecdysones, and polysaccharides, were previously isolated from RAB.

Triterpenoid saponins

Triterpenoid saponins are an important class of bioactive substances in A. bidentata Blume, and their structures are mainly leanness with 1-4 saccharide groups at C-3 and/or C-28 position, thereby forming disaccharide or monosaccharide chains. To date, a total of 46 triterpenoid saponins, the most abundant compounds in RAB, have been isolated from RAB. 3- $O(\alpha_{\rm L}$ -rhamnopyranosyl-[$\beta_{\rm D}$ -glucuro nopyranosyl]) oleanolic acid-28- $O-\beta$ -_D-glucopyranosyl ester (1) and $3-O-\beta_{-p}$ -glucosyl-oleanolic acid-28- $O-\beta_{-p}$ -glucosyl ester (44)^[21] were isolated using the ethanol extraction method. Their structures were characterized using chemical and spectral analysis infrared spectroscopy (IR), mass spectrometry (MS), proton magnetic resonance nuclear magnetic resonance (1H-NMR), carbon-13 NMR (¹³C-NMR), and ¹H,¹³C chemical-shift correlation spectroscopy (C-H COSY). Achyranthoside C dimethyl ester (3), achyranthoside C butyl dimethyl ester (4), achyranthoside D trimethyl ester (6), achyranthoside E trimethyl ester (8), achyranthoside E dimethyl ester (9), achyranthoside E butyl dimethyl ester (10), $18-[\beta-p-g]uco$ pyranosyloxy]-28-oxoolean-12-en-3 β -yl 3-O-[β - $_{D}$ -glucop yranosyl]- β -_D-glucopyranosiduronic acid methyl ester (32), achyranthoside A trimethyl ester (34), and hederagenin-2 8- $O-\beta$ -_p-glucopyranosyl ester (40) were isolated from A. bidentata.^[22] Wei et al.^[25] used Sephadex LH-20, prep-high performance liquid chromatography (prep-HPLC), and spectroscopic techniques to study the chemical composition of RAB. The compounds isolated from A. bidentata and identified in this study, including achyranthoside C (2), chikuserusaponin IV (11), achyranthoside D (5),^[26] achyranthoside E (7), and achyranthoside A (33).^[27] Subsequently, their structures were determined based on NMR spectroscopy and MS. Chikuserusaponin IVa (12), chikusetsusaponin IVa methyl ester (13), chikusetsusaponin IVa butyl ester (14), 28-deglucose chikusetsusaponin D methyl ester (19), oleanolic acid $3-O-\beta$ -p-glucuronopyranoside (20), 28-deglucosyl-chikusetsusaponin IVa butyl ester (23), and momordin IIa (24),^[28] were reported from *A. bidentata*.

Phytochemical investigation of and chemical isolation from the roots of *A. bidentata* yielded chikusetsusaponin IVa ethyl ester (15), oleanolic acid $3-O-\beta_{-D}$ -glucuronopyranoside-6-*O*butyl ester (21), oleanolic acid $3-O-\beta_{-D}$ -glucuronopyranoside-6-*O*-methyl ester (22), chikuserusaponin I (41), and oleanolic acid (42),^[29] chikusetsusaponin V (16), chikusetsusaponin V butyl ester (18), zingibroside R1 (25), achyranthosid I (26) and achyranthosid II (27) were also isolated from *A. bidentata*,^[30] while chikusetsusaponin V methyl ester (17) and bidentatoside II (43) are from the roots.^[31] Solvent extraction and column chromatography were used to isolate

triterpenoid saponins, while physicochemical constants and spectroscopic analysis were employed for structural elucidation.^[32] Ando et al.^[33] studied the composition of the roots of A. bidentata using Sephadex LH-20, prep-HPLC, and spectroscopic techniques. Achyranthoside G (28), achyranthoside G methyl ester (29), achyranthoside H (30) and achyranthoside H methyl ester (31) were identified from A. bidentata. The chemical constituents were isolated and purified using macroporous adsorptive resin D101, silica gel, ODS column chromatography, and prep-HPLC. Their structures were elucidated based on one-dimensional and two-dimensional NMR analyses. Achyranthosid IV (35), ginsenoside R0 (39), 28-norolean-17-en-3-ol (45) and α -spinasteryl- β -_D-glucoside (46),^[34-37] and their structures were elucidated by NMR spectroscopy. Oleanolic acids^[38] isolated from the roots and identified them as oleanolic acid $3-O-[\beta_{-p}-glucuronopyranoside-6-O-methyl ester]-28-O-\beta_{p}$ glucopyranoside (36) oleanolic acid 3-O-[β -_p-glucuronopyranoside-6-*O*-ethylester]-28-*O*- β -_D-glucopyranoside (37), and oleanolic acid $3-O-[\beta-D-glucuronopyranoside-6-O-glucuronopyranopyranoside-6-O-glucuronopyranopyr$ butylester]-28-O- β - $_{D}$ -glucopyranoside (38). Figure 1 and Table 1 summarize the triterpenoid saponins found.

Phytoecdysones

Phytoecdysones all possess a tetracyclic pregnane carbon skeleton but differ in the number and nature of the substituents, which are the main drivers of pharmacological activity. 25S-inokosterone (1) 25R-inokosterone (2) polypodine B (4) podecdysone C (5) stachysterone D (6), rubrosterone (7), achyranthesterone A(8), stachysterone A(19), rhapontisterone B (20), and polypodineB (21),^[39-42] were isolated from A. bidentata. 25S-20,22-O-(R-ethylidene) inokosterone (11) and 20,22-O-(R-3-methoxycarbonyl) propylidene-20hydroxyecdysone (12), together with 25S-inokosterone-20,22-acetonide (13), 20,22-O-(R-ethylidene)-20hydroxyecdysone (14), and 20-hydroxyecdysone-20.22monoacetonide (15), were isolated from A. bidentata.^[43-46] Published literature found on the isolation and structural elucidation of the 29α -(3-methoxy-4-hydroxyphenyl)-20,22-O-methylidene-20-hydroxyecdysone (16), ecdysteroid serfurosterone A (17),^[47-50] from A. bidentata. In addition, researchers^[51-53] performed a phytochemical study on RAB. and obtained additional RAB-derived compounds, such as ecdysone (3), achyranthesterone B (22), and shidasterone (24), 2 β ,3 β ,20 β ,22 α ,25-pentahydroxy-8,14-diene-cholest-6one (25), 20R,22R-2 β,3 β,20,22,26-pentahydroxy-cholestan-7,12-dien-6-one (26) 20-Hydroxyecdysone (27) and from A. bidentata. Moreover identified (20R,22R,24S,25S)-20-O,22-O-(5'-hydroxymethyl)-furfurylidene-2 $\beta,3$ $\beta,14\alpha,26$ tetrahydroxycholest-7-en-6-one (18) through interpretation of spectroscopic data, as well as chemical and spectral analysis (IR, MS, ¹H-NMR, ¹³C-NMR, and C-H COSY techniques).^[24,53] Another three phytoecdysones, niuxixinsterone A (9), niuxixinsterone C (10), and niuxixinsterone B (23).^[54] recently were isolated. Figure 2 and Table 2 summarize the phytoecdysones found.

Figure 1: Structures of the triterpenoid saponins isolated from radix achyranthis bidentatae. Refer to Table 1 for more details

Polysaccharides

Polysaccharides are one of the major groups of active components in RAB and have aroused great interest over the last few decades. So far several kinds of A. bidentata polysaccharide (ABP) have been isolated from the roots of A. bidentata. Hui et al.^[55] isolated a neutral polysaccharide with a molecular weight of 1440 D composed of fructose and glucose residues at a molar ratio of 8.7:1. Subsequently, a peptide-polysaccharide was isolated, and its structure was determined.^[56] A new water-soluble polysaccharide, named ABP70-2, with a molecular weight of 3406 Da was isolated from RAB.^[57] Its detailed structure was demonstrated for the first time and laid the foundation for further research, such as a preliminary evaluation of the underlying mechanisms and structural conformation of ABP70-2. The structural study demonstrated ABP70-2 has a backbone composed of $(2\rightarrow 6)$ -linked β_{-p} -Fruf with $(2\rightarrow 1)$ -linked β_{-p} -Fruf branched chains and terminates with Glc and Fru residues. ABP70-2 has an irregular shape and appears to be mainly comprised overlapping sheets and strips. Analysis of the constituent monosaccharides, IR, and NMR, combined with the results of heteronuclear multiple bond correlation (HMBC) spectrum studies, allowed prediction of a structure for ABP70-2.(The HMBC spectrum had cross peaks between ¹³C spectrum and ¹H spectrum peaks for different residues). The structures are shown in Figure 3.

Others

A. bidentata polypeptides (ABPP) isolated from the aqueous extract of A. bidentata are promising bioactive compounds. The twelve different fractions from crude polypeptides by HPLC, which were labeled as ABPPa, b, c, d, e, f, g, h, i, j, k, and l, respectively.^[58] Other RAB components, including stigmasterol, stigmasteryl glucoside, β -sitosteryl glucoside, betaine hydrate, betaine hydrochloride, succinic acid, oxalic acid, y-aminobutyric acid, α -spinalsterol, β -sitosterol, chrysophanol, dibutyl phthalate, palmitic acid, and daucosterol were reported from A. bidentata.[37,59-61] Two new isoflavonoid glucosides, achyranthosides A and B,^[62] were separated from the roots of A. bidentata. Their structures were established through extensive analyses using 1H-NMR, 13C-NMR, heteronuclear singular quantum correlation HMBC, and nuclear overhauser effect spectroscopy and high-resolution electrospray ionization mass spectroscopy spectroscopic data. Emodin and physcion^[63,64] were isolated from A. bidentata. In addition, eugenol, hydroquinone, para-benzoquinone, asarone, α -ionone, spathulenol, 5-hydroxymethylfurfural, baicalin, wogonin, berberine, palmatine, coptisine, epiberberine, *N*-butyl- β -_p-fructopyranoside, allantoin, and magnesium phosphate, [35,65,66] were also reported. Cyclo-(-Tyr-Leu), cyclo-(-Leu-IIe), nonanedioic acid, and geniposide^[36,67] were discovered in RAB based on HPLC. Glycerol-1,9,12-(Z, Z)-octadecadienoic ester, ergosta-7,22-diene-3 β ,5 α ,6

Table 1: Triterpenoid saponins isolated from radix achyranthis bidentatae

n	Compound name	R ₁	R ₂	R ₃	R ₄	R ₅	Reference
1	$3-O[\alpha-L$ -rhamnopyranosyl-(β -D-glucuronopyranosyl)]oleanolic acid-28- O - β -D-glucopyranosyl ester	-Glc	-H	-Rha	-H	-H	[21]
2	Achyranthoside C	-Glc	-H	А	-H	-H	[25]
3	Achyranthoside C dimethyl ester	-Glc	-H	В	-H	-H	[22]
4	Achyranthoside C butyl dimethyl ester	-Glc	-H	В	-H	-Bu	[22]
5	Achyranthoside D	-Glc	-Glc	А	-H	-H	[26]
6	Achyranthoside D trimethyl ester	-Glc	-Glc	В	-H	-CH,	[22]
7	Achyranthoside E	-Glc	-H	С	-H	-H	[27]
8	Achyranthoside E trimethyl ester	-Glc	-H	В	-H	-CH,	[22]
9	Achyranthoside E dimethyl ester	-Glc	-H	В	-H	-H	[22]
10	Achyranthoside E butyl dimethyl ester	-Glc	-H	В	-H	-Bu	[22]
11	Chikuserusaponin IV	-Glc	-H	-H	-Ara	-H	[24]
12	Chikuserusaponin IVa	-Glc	-Н	-H	-H	-H	[28]
13	Chikusetsusanonin IV a methyl ester	-Glc	-H	-H	-H	-CH	[28]
14	Chikusetsusaponin IVa butyl ester	-Glc	-Н	-H	-H	-Bu	[28]
15	Chikusetsusanonin IVa ethyl ester	-Glc	-H	-H	-H	-Et	[29]
16	Chikusetsusanonin V	-Glc	-Glc	-H	-H	-H	[30]
17	Chikusetsusaponin V methyl ester	-Glc	-Glc	-H	-H	-CH	[31]
18	Chikusetsusanonin V hutul ester	-Glc	-Glc	-H	-H	-Bu	[30]
19	28- deglucose chikusetsusanonin D methyl ester	-H	-Glc	B	-H	-CH	[28]
20	Oleanolic acid $3-O-B-D$ -glucurononyranoside	-H	-H	-H	-H	-H	[28]
21	Oleanolic acid $3 \cdot O \cdot \beta \cdot D$ glucuronopyranoside-6- O -butyl ester	-H	-H	-H	-H	-Bu	[20]
22	Oleanolic acid $3 \cdot O \cdot P \cdot D$ glucuronopyranoside $6 \cdot O \cdot D$ util ester	-H	-H	-H	-H	-CH	[29]
23	28-deglucosyl chikusetsusanonin Iva hutyl ester	-Glc	-H	-H	-H	-H	[29]
23	Momordin IIa	-Glc	-H	-Rha	-H	-CH	[20]
25	Zingihroside R1	-H	-Glc	-H	-H	-H	[20]
25	Achyranthoside I	-Gle	-Gle	-11	-11 _H	-11 _H	[30]
20	Achyranthoside I	-H	-H	Δ	-H	-H	[32]
28	Achyranthoside G	_H	-Glc	Δ	_H	_H	[32]
20	Achyranthoside G methyl ester	-CH	-Glc	B	_H	-CH	[33]
30	Achyranthoside H	Glo	ч	E	-11 Н	-сп ₃	[33]
31	Achyranthoside H methyl ester	-Glc	-11 _H	E	-11 _H	-11 -CH	[33]
32	18[B-D-Oxyalucose] - 28-oxo-12-oleanolic-3B-3-O-(B-D-alucose] - B-D-alucuronic	Gle	-H	-Glc	-11 _H	-CH	[22]
32	A churanthoside A (achuranthosid III)	Gle	-H	-010 _H	-11 _H	-CII ₃	[22]
34	Achyranthoside A trimethyl ester	-Glc	-11 -H	-H	-H	-H	[27]
35	Achyranthoside IV	-01C	-H	-CH3	-CH ₃	-CII ₃	[22]
36	Oleanolic acid 3- O -[β - D -glucuronopyranoside- 6 - O -methyl ester]-28- O - β - D -glucopyranoside	-H	-Me-6-O-GlcUA	-11	-11	-11	[38]
37	Oleanolic acid 3- O -[β - D -glucuronopyran-oside-6- O -ethyl	-H	-Et-6-O-GlcUA				[38]
38	Oleanolic acid 3- O -[β - D -glucopyranoside ester]-28- O - β - D -glucopyranoside	-H	-Bu-6-O-GlcUA				[38]
30	Ginsenoside P0	н	Gla (1.2) GlaUA				[35]
40	Hederagenin-28-0-8-D-gluconvranosyl ester	-0H	_H				[22]
<u>4</u> 1	Chikuserusanonin I	-Glo	_H				[20]
42	Oleanolic acid	_H	-11 _H				[20]
∠ 43	Bidentatoside II	-Glo	-11 G				[2]]
44	3-0-B-D-glucosyl-oleanolic acid-28-0-B-D-glucosyl ester	-Gle	-Gle				[21]
77	$5 \circ p D$ Bracosyl ordanone acta $20 \circ p D$ -gracosyl ester	JIC	010				[-1]

 β -triol, and *N*-trans-feruloyltyramine^[68] were reported in the isolation, from a 70% ethanol extract. Linoleic acid, *Z*-8,11,12,-trihydroxy-9-octadecenoic acid, *Z*-8,11,12,-trihydroxy-9-octadecenoic acid methyl ester, *N*-cis-feruloyltyramine, and *N*-cis-feruloy-3-methoxytyramine were isolated from *A. bidentata*.^[52] *N*-trans-feruloyl-3-meth oxytyramine-4-O- β -_D-glucopyranoside,^[38] *N*-trans-feruloyl -3-methoxytyramine-4'-O- β -_D-glucopyranoside,^[33] recently were isolated from *A. bidentata*. In addition to the compounds listed above previously, other compounds, including rutinum, astragalin, caffeic acid, kaempferol-3-O-glucoside, and isoquercitrin^[69,70] were also reported from *A. bidentata*.

Figure 2: Structures of the phytoecdysones isolated from radix achyranthis bidentatae. Refer to Table 2 for more details

Table 2. Fingloccuysones isolated from fault achyrantins bidellatae									
n	Compound name	R ₁	R ₂	$R_{_3}$	R_4	R_{5}	Reference		
1	25S-inokosterone	-OH	-OH	-H	-OH	А	[39]		
2	25 <i>R</i> -inokosterone	-OH	-OH	-H	-OH	В	[39]		
3	Ecdysterone	-OH	-OH	-H	-OH	С	[49]		
4	Polypodine B	-OH	-OH	-OH	-OH	С	[40]		
5	Podecdysone C	-OH	-OH	-H	-OH	Е	[42]		
6	Stachysterone D	-OH	-OH	-H	-OH	F	[40]		
7	Rubrosterone	-OH	-OH	-H	-OH	=O	[41]		
8	Achyranthesterone A	-OH	-OH	-OH	-OH	D	[40]		
9	Niuxixinsterone A	-OH	-OH	-H	-OH	G	[24]		
10	Niuxixinsterone C	-OH	-OH	-OH	-OH	Н	[24]		
11	25S-20,22-O-(R-ethylidene) inokosterone	-OH	-OH	-H	-OH	Ι	[43]		
12	20,22-O-(R-3-methoxycarbonyl) propylidene-20-hydroxyecdysone	-OH	-OH	-H	-OH	J	[43]		
13	25S-inokosterone-20,22-acetonide	-OH	-OH	-H	-OH	Κ	[44]		
14	20,22-O-(R-ethylidene)-20-hydroxyecdysone	-OH	-OH	-H	-OH	L	[45]		
15	20-hydroxyecdysone-20,22-monoacetonide	-OH	-OH	-H	-OH	М	[46]		
16	29α-(3-methoxy-4-hydroxyphenyl)-20,22-O-methylidene-20-hydroxyecdysone	-OH	-OH	-H	-OH	Ν	[49]		
17	Serfurosterone A	-OH	-OH	-H	-OH	Ο	[50]		
18	$(20R, 22R, 24S, 25S)$ -20- $O, 22$ - O - $(5'$ -hydroxymethyl)-furfurylidene- $2\beta, 3\beta, 14\alpha, 26$ -tetrahydroxycholest-7-en-6-one	-OH	-OH	-H	-OH	Р	[53]		

Table 0. Division division and included from redivision bidentates

Figure 3: Structures of the ABP70-2 isolated from radix achyranthis bidentatae

Pharmacology

TCM states that RAB is bitter and sour, and has many physiological functions, including dissipating blood stasis, nourishing the liver and kidney, and strengthening the bones and muscles. TCM also holds RAB can be used for the treatment of osteodynia of the lumbar and knees, as well as spasms and flaccidity of limbs. Pharmacological and clinical investigations carried out during the last few years have shown that root extracts have specific biological effects, including immune system regulating, anti-fertility, anti-tumor, analgetic, anti-inflammatory, old-age-resisting, cardiovascular, and nervous system activity, and can treat osteoporosis.

Immunomodulatory effect

It is well-known that macrophages play a key role in host defense, and many plant extracts activate immune responses primarily by the activation of macrophages, although direct activation of B cells and other immune cells have also been implicated. During the last decades, *ABP* has been shown to have immunostimulatory properties that affect lymphocyte proliferation and serum antibody levels.^[18,71] Meanwhile, ABP can potentiate the humoral immune response. Activated macrophages release many inflammatory cytokines to exert their biological effects, including nitric oxide (NO), tumor necrosis factor- α (TNF- α), and TNF- β , which play critical roles in the immune defense. ABP also generates potent humoral and cellular immune responses against cancer cells and induces production of immune responses.^[18,72]

Sun^[73] evaluated the hemolytic activity of *A. bidentata* saponins (ABS) and their potential as adjuvants for cellular and humoral immune responses in the Institute of Cancer Research mice against ovalbumin (OVA), and found ABS significantly increases the activation potential of T and B cells in OVA-immunized mice. In addition, ABS has a slight hemolytic effect and significantly enhances a specific antibody and cellular response against OVA in mice.

Anti-fertility effect

The researchers evaluated the anti-fertility effect of ABS in rats and mice and found ABS could effectively prevent

Yang, et al.

pregnancy.^[74,75] Guo *et al.*^[76] studied the effects of ABS on isolated uteri from rats and rabbits *in situ* and found ABS caused a concentration-dependent excitation in the uterine preparations. When ABS was introduced, it clearly excited both virgin and pregnant rabbit uteri *in situ*. Subsequently, the anti-fertility effect of ABS has received growing attention. ABS was studied anti-fertility effect and found ABS causes a dose-dependent stimulation of rat uteri that is enhanced by 5-hydroxytryptamine (5-HT). ABS and 5-HT induce Ca²⁺(0)-and Ca²⁺(1)-dependent contractions of the uterus. Therefore, they concluded ABS has an important anti-fertility effect.^[77]

Analgetic, anti-inflammatory, and antimicrobial activity

An analgetic effect of different products from processed *A. bidentata* was observed in mice using the hot plate and acetic acid-induced writhing test. Specifically, water extract of *A. bidentata* and its processed products inhibited pain. The analgetic effect of these products is the most powerful and lasting when processed with wine.^[78,79]

Different doses of the total saponins of achyranthes markedly lighten inflammatory reactivity in rats and mice, ease the pain of mice on a hot plate, and improve the hemorheology of rats. Obvious anti-inflammatory, analgetic, and hemorheological effects have been noted for the total saponins of achyranthes.^[80] Tang *et al.*^[62] evaluated their anti-inflammatory activity against lipopolysaccharide-induced NO production in RAW 264.7 (Mouse Leukaemic Monocyte-Macrophage Cell Line) murine macrophage cells, and found these compounds significantly inhibited this NO production.

Therefore, RAB extracts have analgetic, anti-inflammatory, and antimicrobial activity.

Old-age-resistant function

Ma^[81,82] studied the effect of continuous administration of water extracts of *A. bidentata* to mice for 7 days, and found these extracts effectively improve the acquisition of memory of and enhance the endurance of mice. These results indicate the decoction of RAB has memory- and endurance-enhancing activity. When mice were given the decoction of RAB for 30 days, there was an increase in superoxide dismutase vigor in the senile model mice and a reduction in plasma lipid peroxide.

Cardiovascular and nervous systems

Using a model of atherosclerosis induced by high lipid feed, Researchers discovered *Achyranthes* has an anti-atherosclerosis effect, as well as reduces blood fat and lipid peroxidation.^[83]

Wang *et al.*^[84] assessed the effects of saponins *A. bidentata* on blood pressure, changes in nerve state, death rate, brain index, and pathologic changes in the hippocampal neurons of spontaneously hypertensive rats. It was concluded that saponins from *A. bidentata* are beneficial as therapeutics when treating strokes in this model.

Jiang *et al.*^[85] found that nerve growth factor (NGF) deficiency is the main cause of certain types of degenerative neuron

diseases, such as Alzheimer's disease, and administration of NFC can prevent decay of neuronal function and promote nerve regeneration. NGF actions are mediated by their corresponding receptors. The NGF receptor binding assay was used as a model when screening for components from 14 Chinese medicinal herbs active against NGF receptors, and a component from the roots of ABPP was found to possess such inhibitory activity. Subsequently, scholars investigated the effects of polypeptides isolated from ABPP on rat sciatic crush injury and tested the possible involvement of neurotrophic factors. Based on walking track, electrophysiological, and histological evaluations, it was found the repair outcomes of ABPP treatment were similar to those of NGF treatment, but an improvement over treatment with saline alone. Therefore, ABPP may protect peripheral nerves against crush injury by stimulating the release of neurotrophic factors and other cytokines.[86]

Scholars^[87,88] showed *A. bidentata* extract protects hippocampal neurons against glutamate neurotoxicity by interfering with increases in intracellular calcium ion concentrations and reversing the down regulation of B-cell lymphoma-2 (Bcl-2). Because glutamate-evoked cell injury in hippocampal neurons is implicated in many central nervous system (CNS) disorders, the protective effects of *A. bidentata* extract raise the possibility of using medicinal herb-based drugs as potential alternatives or supplements to therapeutic strategies for these CNS diseases. Furthermore, ABPP can enhance the function of NR2A-containing N-methyl-D-aspartate receptors.

Previous research found^[89] that ABPP fraction k (ABPPk) could effectively inhibit neuronal apoptosis induced by glucose deprivation *in vitro* and exert neuron protection on a rat transient middle cerebral artery occlusion model by improving neurologic deficit, decreasing infarction volume and inhibiting neuronal apoptosis in penumbra area. Indicated that the ABPPk could be considered as a new strategy for developing a novel small molecular active peptide to remedy transient brain ischemia because of its neuron protective effects.

Peng et al.^[90] found that ABPP might play a beneficial role against Parkinson's disease (PD) by protecting dopaminergic neurons from apoptosis. Cells and primary rat dopaminergic neurons were pretreated with ABPPk, a purified fraction of ABPP, and then the cells were exposed to 1-methyl-4-phenylpyridinium iodide (MPP+) to induce apoptosis. In an in vivo PD model induced by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), ABPPk was intranasally delivered to mice. Behavioral tests, Nissl staining, immunostaining, immunohistochemistry, and Western blot were used to evaluate the potential effects of ABPPk on PD in mice. In an in vivo MPTP-induced PD model, ABPPk significantly improved behavioral performances and prevented tyrosine hydroxylase loss in the substantia nigra pars compacta and striatum. Scholars proposed that ABPPk protects dopaminergic neurons from apoptosis, suggesting that ABPPk might be an effective intervention for treating the neuron loss associated with disorders such as PD.

In conclusion, ABPP has potent activity in the cardiovascular and nervous systems.

Osteoporosis

Gan *et al.*^[91,92] studied the effect of daucosterol in RAB on the proliferation of osteosarcoma cell (UMR 106 cells) and quickly screened daucosterol by cultivating it with OB-like cells *in vitro*. Meanwhile, Gao *et al.* studied the effects of RAB extracts on OB-like UMR 106 cells and found RAB may contain compounds that stimulate OBs.

The study found the effects of *A. bidentata* root extract (ABRE) on postmenopausal osteoporosis. After 16 weeks of ABRE treatment, an improvement in the biomechanical quality of bone through modifications of bone mineral density and trabecular microarchitecture without hyperplastic effects on the uterus were observed. Therefore, ABRE may be a potential alternative medicine for the treatment of postmenopausal osteoporosis.^[93]

A study by Yu *et al.*^[94] found characterized the effects of ABS on osteoclast differentiation and elucidated its potential anti-osteoporosis mechanism. They found ABS inhibits osteoclast formation, indicating that it could be used as a bone resorption inhibitor to treat osteoporosis.

Zhang *et al.*^[49] showed that a novel *A. bidentata* polysaccharide (ABPB-3) significantly increased the relative fluorescence intensity of the skull bone mass in a concentration-dependent manner, indicating that it stimulated bone formation activity. Subsequently, Wang *et al.*^[50] indicated that a novel oligosaccharide (ABW90-1) from *A. bidentata* that ABW90-1 exhibited favorable effects on the proliferation and differentiation of primary OBs.

Others

The major effective compounds in RAB, also affect the regulation of glucose metabolism,^[15,53] have an anti-arthritic effect,^[95-97] protect endothelial cells,^[98-101] regulate gene expression,^[102-107] anticoagulant and antithrombotic activities,^[10,108,109] and hypoglycemic activity.^[110]

TOXICITY

According to the available knowledge, the toxicity of *A. bidentata* is low and safe enough for medical uses. The cytotoxic composition of *A. bidentata* extract was studied. The high-molecular fraction from the water-macerating extract of RAB root was found to have remarkable cytotoxicity against P388 leukemia cells *in vitro*. In addition, polysaccharide derived from *A. bidentata* root may be cytotoxic.^[111]

CONCLUSION

Overall, RAB is a traditional plant medicine possessing multiple pharmacological properties, with considerable potential clinical value, as demonstrated by a large number of pharmacological and phytochemical studies carried out over the past few years. Specifically, these studies have shown RAB has notable immunomodulatory, anti-fertility, anti-tumor, analgetic, anti-inflammatory, and anti-oxidant activity, bioactivity toward the cardiovascular and nervous system, and potential as an osteoporosis treatment. Because of this outstanding biological activity of RAB, an increased number of chemical and toxicity studies should be performed assessing RAB. Therefore, RAB is the plant of choice for future research and will surely attract the attention of research scholars in the fields of pharmacology, drug discovery, and phytochemistry.

Research Funding

This project was financially supported by the National Natural Science Foundation of China (grant number 81803690); the Innovative Talents Funding of Heilongjiang University of Chinese Medicine (grant number 2012RCQ20); the Heilongjiang Postdoctoral Innovation Foundation (grant number LBH-Z10020); the Heilongjiang University of Chinese Medicine Doctoral Innovation Foundation (grant number 2013bs04); the Natural Science Foundation of Heilongjiang Province (grant number H201324); the Specialized Research Fund for the Doctoral Program of Higher Education of China (grant number 20132327120003); the Heilongjiang Postdoctoral Scientific Research Developmental Fund (grant number LBH-Q16210); the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (grant number UNPYSCT-2017219).

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Hu J, Qi YX, Li QX. The research of extract of *Achyranthes bidentata* blume anti-tumor activity. Chin J Microbiol Immunol 2005;25:415-8.
- Li CC, Hu XG, Zhang WX, Xie LW, Zhang HY, Dong L, et al. Eosinophils apoptosis, fas mRNA and bcl-2 mRNA expressions in asthma model of young rat and effects of *Achyranthes bidentata* polysaccharides. Zhonghua Er Ke Za Zhi 2003;41:657-60.
- 3. Chen XM, Xu YJ, Tian GY. Physical-chemical properties and structure elucidation of abPS isolated from the root of *Achyranthes bidentata*. Yao Xue Xue Bao 2005;40:32-5.
- 4. Yuan YJ, Cui Y, Yu Y, Yan Y. Different mechanisms mediate the exciting effect about *Achyranthes bidentata* on the spike activity of the uterine smooth muscle in virgin rats. Chin J Vet Sci Technol 2002;32:8-12.
- Liu JH, Liang SW, Wang SM. A study of antiprocreat effect of *Achyranthes bidentata* saponin suppository. J Henan Univ Chin Med 2006;21:35-7.
- Shi YF, Zheng YB. Study on the anti-inflammatory and antibacterial effects of *Achyranthes bidentata*. Tradit Chin Med J 1988;13:428-30.
- Gao CK, Gao J, Ma RL, Xu XX, Huang P, Ni SD. Research on analgesic and anti-inflammatory and invigorate circulation effects of Total Saponins of Achyranthes. Anhui Med Pharm J 2003;7:248-9.
- 8. Ma AL, Guo H. Effect of *Achyranthes bidentata* on memory and endurance. Chin Med Mat 1998;21:624-6.
- Deng HB, Cui DP, Jiang JM, Feng YC, Cai NS, Li DD, et al. Inhibiting effects of Achyranthes bidentata polysaccharide and Lycium barbarum polysaccharide on nonenzyme glycation in D-galactose induced mouse aging model. Biomed Environ Sci 2003;16:267-75.
- 10. Li X, Liu S. Variations in lifespan and growth of silkworm induced by

Yang, et al.

4 famous Chinese herbs of Huaiqing area. Zhongguo Zhong Yao Za Zhi 1990;15:563-5, 578.

- Gao CG. Studies on the preventive and curative effects of *Achyranthes bidentata* on osteoporotis induced by retioic acid in rats. Prim J Chin Mat Med 2001;15:9-11.
- Ren CX, Xu XX, Xu DJ, Gao J. Effects of *Achyranthes bidentata* saponins on bone metabolism of osteoporotis rats induced by retioic acid. Chin J Exp Tradit Med Form 2011;17:128-30.
- Dong QW, Chen ZF, Chen SQ. Efffects of *Achyranthes bidentata* ecdysterone on osteoporosis in ovariectomized rats. J Guangdong Pharma Coll 2009;25:512-5.
- Dong Q, Guo XM, Nie Y. P75 radix *Achyranthis bidentatae* in type 2 diabetic rats had the effects of gene expression. Acta Chin Med Pharmacol 2007;35:20-1.
- Chen Q, Xia YP, Zou ZM. Effect of ecdysterone on glucose consumption of HepG2 Cells. Chin Pharmacolo Bull 2005;21:1385-62.
- Jin HX, Hou SL. Effect of Maifan stone, early embryo development of *Achyranthes*. Henan Tradit Chin Med 1993;13:208.
- Xiang DB, Ge JB, Li XY. Enhancement of humoral immunity by *Achyranthes bidentata* polysaccharides in mice. Shanghai J Immunol 1994;14:134-6.
- Li ZK, Li DD. The immunomodulatory effect of *Achyranthes bidentata* polysaccharides. Yao Xue Xue Bao 1997;32:881-7.
- Zhu DY. Studies on active ingredients of TCM-the essential part of TCM's Modernization. Prog Chem 2009;21:24-9.
- 20. Cao ZQ. New Thinking about study of pharmacodynamic material basis and functional mechanism in Chinese materia medica-study on the relation between morphology and biological activity of chemical species in Chinese materia medica. Acta Univ Tradit Med Sin Pharmacol Shanghai 2000;14:36-40.
- Wang XJ, Zhu LZ. Studies on the saponin constituents of NiuXi (Achyrathes bidentata). J Fourth Mil Med Univ 1996;17:427-30.
- 22. Li JX, Hareyama T, Tezuka Y, Zhang Y, Miyahara T, Kadota S, et al. Five new oleanolic acid glycosides from *Achyranthes bidentata* with inhibitory activity on osteoclast formation. Planta Med 2005;71:673-9.
- Li X, Zhao W, Meng D, Qiao A. A new phytosterone from the roots of Achyranthes bidentata. Fitoterapia 2007;78:607-8.
- Wang QH, Yang L, Jiang H, Wang ZB, Yang BY, Kuang HX, et al. Three new phytoecdysteroids containing a furan ring from the roots of *Achyranthes bidentata* bl. Molecules 2011;16:5989-97.
- Wei HL, Li YJ, Chen J, Li P. Triterpenoid saponins in roots of Achyranthese bidentata. Chin J Nat Med 2012;10:98-101.
- Ida Y, Satoh Y, Katsumata M, Nagasao M, Shoji J. Achyranthosides C and D, novel glucuronide saponins from *Achyranthes fauriei* root. Chem Pharm Bull (Tokyo) 1995;43:896-8.
- Jia SP, Yu ZY, Hao ZF, Li JX. Isolation and identification of triterpenoids from root of *Achyranthes bidentata* in Henan. Zhongguo Zhong Yao Za Zhi 2006;31:1244-7.
- Qi N, Jia S, Hao Z. Isolation and identification of the chemical constituents of radix from *Achyranthes bidentata*[J]. Chinese J Med Chem 2005;15: 162.
- 29. Li J, Bi ZM, Xian YJ, Li P. Studies on triterpenoid saponins from *Achyranthese bidentata* Bl. Chin Pharm J 2007;42:178.
- Lu L, Feng F, Liu WY, You QD. Studies on chemical constituents from Achyranthes bidentata Blume. Pharm Clin Res 2007;15:202-4.
- Mitaine-Offer AC, Marouf A, Hanquet B, Birlirakis N, Lacaille-Dubois MA. Two triterpene saponins from *Achyranthes bidentata*. Chem Pharm Bull (Tokyo) 2001;49:1492-4.
- Wang GS, Zhou XP, Yang XH, Xu J. Study on the acidic triterpenoid saponins of *Achyranthes bientata* Bl. Chin J Med Chem 2004;14:40-2.
- 33. Ando H, Fukumura M, Hori Y, Hirai Y, Toriizuka K, Kuchino Y, *et al.* Two new glucuronide saponins, Achyranthosides G and H from *Achyranthes fauriei* root. J Nat Med 2015;62:57-62.
- Wang GS, Zhou XP, Yang XH, Xu J. The triterpenoid saponins of Achyranthes bientata Bl. Chin J Med Chem 2005;15:224-6.
- Meng DL, Li X, Xiong YH, Wang JH. Study on the chemical constituents of *Achyranthes bidentata* Bl. J Shenyang Pharm Univ 2002;19:27-30.
- Meng DL, Ji S, Zhang YC, Li N, Li X. Isolation and identification of terpenoids and saccharides from root of *Achyranthese bidentata* Bl. J Shenyang Pharm Univ 2009;26:348-52.

- Wei S, Liang H, Zhao Y, Zhang R. Separation and identification of the compounds from *Achyranthes bidentata* bl. Zhongguo Zhong Yao Za Zhi 1997;22:293-5, 319-20.
- Yang L, Jiang H, Wang QH, Yang BY, Kuang HX. A new feruloyl tyramine glycoside from the roots of *Achyranthes bidentata*. Chin J Nat Med 2012;10:16-9.
- Meng DL, Li X, Huang JJ, Wang Y. Study on the 25-epimers of inokosterone in *Achyranthes bidentata* Bl. and their antitumor activities. J Shenyang Pharm Univ 2004;21:266-7.
- Meng DL, Li X, Wang JH. A new phytosterone from *Achyranthes bidentata* Bl. J Asian Nat Prod Res 2005;7:181-4.
- Meng DL, Hou BL, Wang Y, Zhang PL. Phytosterone constituents from <u>Achyranthese bidentata</u> Bl. J Shenyang Pharm Univ 2006;23:562-4.
- Zhao WT, Meng DL, Li X, Li W. Chemical constituents of *Achyranthes bidentata* Bl. J Shenyang Pharm Univ 2007;24:207-10.
- Zhang M, Zhou ZY, Wang J, Cao Y, Chen XX, Zhang WM, et al. Phytoecdysteroids from the roots of *Achyranthes bidentata* blume. Molecules 2012;17:3324-32.
- Budesínský M, Vokác K, Harmatha J, Cvacka J. Additional minor ecdysteroid components of leuzea carthamoides. Steroids 2008;73:502-14.
- Odinokov VN, Kumpun S, Galyautdinov IV, Evrard-Todeschi N, Veskina NA, Khalilov LM, *et al.* Low-polarity phytoecdysteroids from the juice of *Serratula coronata* L. Collect Czechoslov Chem Commun 2005;70:2038-52.
- Píš J, Buděšínský M, Vokáč K, Laudová V, Hatmatha J. Ecdysteroids from the roots of *Leuzea carthamoides*. Phytochem 1994;37:707-11.
- Martins A, Csábi J, Balázs A, Kitka D, Amaral L, Molnár J, et al. Synthesis and structure-activity relationships of novel ecdysteroid dioxolanes as MDR modulators in cancer. Molecules 2013;18:15255-75.
- Liktor-Busaa E, Simonb A, Tóthb G, Báthori M. The first two ecdysteroids containing a furan ring from *Serratula* wolffii. Cheminform 2008;49:1738-40.
- Zhang S, Zhang Q, Zhang D, Wang C, Yan C. Anti-osteoporosis activity of a novel *Achyranthes bidentata* polysaccharide via stimulating bone formation. Carbohydr Polym 2018;184:288-98.
- Wang C, Zhang D, Zhang M, Jiao YK, Jiang KM, Yan CY. Structural characterization of a novel oligosaccharide from *Achyranthes bidentata*, and its anti-osteoporosis activities. Ind Crop Prod 2017;108:458-69.
- Ling DZ, Wang GS, Yang XH, Xu JD. Studies on steroid constituents of Achyranthes bientata Bl. Chin Acad J 2006;41:1295-7.
- Tang X, Pei G, Zhou ZY, Tan JW. Chemical constituents from roots of Achyranthes bidentata. J Trop Subtrop Bot 2013;21:57-62.
- Luan HY, Gao YH, Zhao XL, Run Y. Study on the effect of *Achyranthes bidentata* polysaccharides on diabetic kidney protection. Heilongjiang Med Pharm 2008;31:56-7.
- Yang L, Jiang H, Yan ML, Xing XD, Zhang YY, Wei N, et al. A new phytoecdysteroid from the roots of *Achyranthes bidentata* bl. Nat Prod Res 2017;31:1073-9.
- 55. Hui YZ, Zou W, Tian GY. Structural study on a bioactivity oligosaccharide (AbS) isolated from the root of *Achyranthes bidentata* blume. Acta Chim Sin 1989;47:621-2.
- Fang JN, Zhang ZH, Liu BN. The chemical studies of *Achyranthes* bidentata polysaccharides. Acta Pharm Sin 1990;25:526-9.
- 57. Chang SW, De HH, Chun YY. Structural characterization and antioxidant activities of a novel fructan from *Achyranthes bidentata* Blume, a famous medicinal plant in China. Ind Crop Prod 2015;20:427-34.
- 58. Yu S, Wang C, Cheng Q, Xu H, Zhang S, Li L, et al. An active component of Achyranthes bidentata polypeptides provides neuroprotection through inhibition of mitochondrial-dependent apoptotic pathway in cultured neurons and in animal models of cerebral ischemia. PLoS One 2014;9:e109923.
- Takemoto T, Ogawa S, Nishimoto N. Studies on the constituents of *Achyranthis* Radix. I. Yakugaku Zasshi 1967a; 87:1463-8.
- Takemoto T, Ogawa S, Nishimoto N. Studies on the constituents of *Achyranthis* Radix. II. Isolation of the insectmoulting hormones. Yakugaku Zasshi 1967b; 87:1469-73.
- Misra TN, Singh RS, Pandey HS, Prasad C, Singh S. Isolation and characterization of two new compounds from *Achyranthes aspera* Linn. Sect B Org Chem Incl Med Chem 1996;35:637-9.

Radix achyranthis bidentatae phytochemistry and pharmacology

- 62. Tan YF, An N, Li YH, Cheng SQ, Zhang JQ, Zhang XP, *et al.* Two new isoflavonoid glucosides from the roots of *Achyranthes bidentata* and their activities against nitric oxide production. Phytochem Lett 2016;17:187-9.
- Bishit G, Sandhu H. Chemical constituents and antimicrobial activity of *Achyranthes bidentata*. J Indian Chem Soc 1990;67:1002-3.
- Bishit G, Sandhu H, Verma S. Constituents of *Achyranthes bidentata*. Fitoterapia 1993;64:85.
- Meng DL, Li X, Huang JJ, Wang Y. Studies of the constituents and biological activities of *Achytanthes bidentata* Bl. Shenyang Pharm Univ 2004.
- 66. Chao ZM, Shang EJ, He B, Zhao J. Studies on the chemical constituents of water extract from *Achyranthes bidentata*[J]. Zhongguo yao xue za zhi (Zhongguo yao xue hui: 1989), China Acad J 1999;34:587-8.
- Meng DL, Zhang YC, Li N, Liu ZG, Li X. Isolation and identification of constituents from *Achyranthese bidentata* Bl. J Shenyang Pharm Univ 2008;25:360-3.
- Dong QQ, Yan J, Zheng MF. Chemical constituents from seeds of Achyranthes bidentata Blume. J Trop Subtrop Bot 2010;18:569-72.
- Stefan N, Ngugen T, Valocho Z. Flaroonoids from Achyranthes bidentata BI[C]. Acta Hoct 1996;426:75-8.
- Wang T, Cui SY, Suo YR, Lu RH. Studies on water-soluble chemical constituents in root of *Achyranthes bidentata*. Zhongguo Zhong Yao Za Zhi 2004;29:649-52.
- Xiang DB, Jiang C, Li XY. Influence of *Achyranthes bidentata* polysaccharides on function of Tlymphocytes and natural killer cells. Chin J Pharmacol Toxicol 1994;8:209-12.
- Yu S, Zhang Y. Effect of *Achyranthes bidentata* polysaccharides (ABP) on antitumor activity and immune function of S180-bearing mice. Zhonghua Zhong Liu Za Zhi 1995;17:275-8.
- Sun HX. Adjuvant effect of *Achyranthes bidentata* saponins on specific antibody and cellular response to ovalbumin in mice. Vaccine 2006;24:3432-9.
- Zhu H, Che XP. Study on antifertility effect of Achyranthes bidentata saponins (ABS) on rats and mice. Touranl Xian Med Univ 1987;8:246-9.
- Guo SM, Che XP, Fan XW. Effects of *Achyranthes bidentata* saponin a on animal uteri. Touranl Xian Med Univ 1997;18:216-8.
- Guo SM, Che XP, Fan XW. Study on antifertility effect and uterine smooth muscle function of *Achyranthes bidentata* saponins (ABS). Northwest Pharm J 1996;11:46-9.
- 77. Wang SX, Che XP. Mechanism of stimulation of *Achyranthes bidentata* saponins on isolated rat uterus. Touranl Xian Med 1996;11:160-2.
- Lu TL, Mao CQ, Zhang L, Xu WM. The research on analgestic and anti-inflammtory action of different processed products of *Achyranthes bidentata*. Chin Med Mat 1997;20:507-9.
- Li XC, Guo SM, Sun HY, Hou YF. Study on the analgesic effect of celecoxib with total saponins of *Achyranthes bidentata*. Shaanxi Med J 1999;28:735-6.
- Gao CM, Gao J, Ma RL, Xu XX, Huang P, Ni SD. Research on analgesic and anti-inflammatory and invigorate circulation effects of total saponins of *Achyranthes*. Anhui Med Pharm J 2003;7:248-9.
- Ma AL. Effect of *Achyranthis bidentatae* on memory and endurance. Chin Med Mat 1998;21:624-6.
- Ma A, Guo H. Study of old-age-resistant function of radix *Achyranthes bidentatae*. Zhong Yao Cai 1998;21:360-2.
- Cui Y, Hou SL. Study on prevention of atherosclerosis in *Achyranthes bidentata*. Primary J Chin Mat Med 1998;12:30-1.
- Wang LJ, Zhu Y, Liao MC. Therapeutic effects of saponins from Achyranthes bidentata in SHPsp. J Ethnopharmacol 2012;139:12-8.
- Jiang LM, Li ZM, Han BG. Screening for NFC active Chinese medicinal herbs and their active components. Chin Tradit Herbal Drugs 1994;25:79-81.
- Wang Y, Shen W, Yang L, Zhao H, Gu W, Yuan Y, *et al.* The protective effects of *Achyranthes bidentata* polypeptides on rat sciatic nerve crush injury causes modulation of neurotrophic factors. Neurochem Res 2013;38:538-46.
- 87. Shen H, Yuan Y, Ding F, Liu J, Gu X. The protective effects of *Achyranthes bidentata* polypeptides against NMDA-induced cell apoptosis in cultured hippocampal neurons through differential modulation of NR2A- and NR2B-containing NMDA receptors. Brain Res Bull 2008;77:274-81.

- Zhou SL, Chen X, Gu XS, Ding F. Achyranthes bidentata Blume extract protects cultured hippocampal neurons against glutamate-induced neurotoxicity. J Ethnopharmacol 2009;122:547-54.
- He CJ, Ceng Q, Ding F. The effects of an active component isolated from *Achyranthes bidentata* polypeptides on rat transient ischemia. J Nantong Univ Med Sci 2017;37:91-6.
- Peng S, Wang C, Ma J, Jiang K, Jiang Y, Gu X, et al. Achyranthes bidentata polypeptide protects dopaminergic neurons from apoptosis in Parkinson's disease models both in vitro and in vivo. Br J Pharmacol 2018;175:631-43.
- Gan XY, Su YF, Li FM, Jiang ZM. The effect of the extracts of *Achyranthes bidentata* Bl. on proliferation of osteoblast-like UMR 106 cells. J Shenyang Pharma Univ 2000;17:210-3.
- Gan XY, Su YF, Li FM. The effect of daucosterol in *Achyranthes* bidentata BL. on proliferation of UMR106 osteoblast like cells and determination. J Chengde Med Coll 2003;20:1-4.
- Zhang R, Hu SJ, Li C, Zhang F, Gan HQ, Mei QB. Achyranthes bidentata root extract prevent OVX-induced osteoporosis in rats. J Ethnopharmacol 2012;139:12-8.
- Yu DY, Lv XC, Shi LY, Li J. Inhibitory effect of triterpenoidal saponins from *Achyranthes bidentata* Bl. on osteoclast differentiation. Chin J Tradit Med Traumatol Orthop 2011;19:9-11.
- 95. Xiao W, Ma XJ, Peng LP, Wang LX, Yu T, Liao ZW, *et al.* Intervention effects of alcohol extractive of Radix *Achyranthis bidentatae* on the proliferation *in vitro* and glycosaminoglycan of chondrocytes in rabbits with osteoarthritis. China Med Her 2017;14:20-4.
- Sha NA, Duan C, Wang L, Lv L, Chen GL. Effects and mechanism of total saponins of *Achyranthes* on acute gouty arthritis in rats. Chin J Clin Pharmacol Ther 2017;22:966-71.
- Xu XX, Zhang XH, Diao Y, Huang YX. Achyranthes bidentate saponins protect rat articular chondrocytes against interleukin-1β-induced inflammation and apoptosis *in vitro*. Kaohsiung J Med Sci 2017;33:62-8.
- Wei Q, Gai GZ, Yi PW. Experimental study on pharmacological effect of *Achyranthes bidentata* serum on vascular endothelial cells. J Changchun Univ Tradit Chin Med 2008;24:244-5.
- Yang YH, Yi L, Zhu XQ, Duan JA. Preparation of the saponins of *Achyranthes bidentata* and protection effect of endothelia cells (HUVEC) stimulated by Sodium Urate Solution (MSU). Inform Tradit Chin Med 2010;27:15-8.
- 100. Liu M, Tang DC, Chen QQ. Effect of Xuefu Zhuyu decoction and platycodon grandiforus *Achyranthes bidentataon* in it expression of adhesion molecules in vascular endothelial cells of blood stasis rats. J Liaoning Univ Tradit Chin Mad 2012;14:76-8.
- 101. Feng CY, Huang XR, Qi MX, Tang SW. Effects of ecdysterone on the expression of NF-κB p65 in H2O2 induced oxidative damage of human lens epithelial cells. Chin J Integr Tradit Western Med 2012;32:76-9.
- Cho WL, Raikhel AS. A novel function of 20-hydroxyecdysone: Translational repression of the lysosomal protease mRNA in the mosquito fat body. Insect Biochem Mol Biol 2001;31:283-8.
- 103. Wang QJ, Lei XY, Zheng LP, Wang JW. Molecular characterization of an elicitor-responsive 3-hydroxy-3-methylglutaryl coenzyme A reductase gene involved in oleanolic acid production in cell cultures of *Achyranthes bidentata*[J]. Plant Growth Regulation, 2016;81:1-9.
- 104. Futahashi R, Fujiwara H. Regulation of 20-hydroxyecdysone on the larval pigmentation and the expression of melanin synthesis enzymes and yellow gene of the Swallowtail butterfly, *Papilio xuthus*. Insect Biochem Mol Biol 2007;37:855-64.
- 105. Zong CH. Effects of *Achyranthes bidentata* polysacccharides on the expression of BCL-2 and FAS in hepatocarcinoma H-22 cells. J Mudanjiang Med Coll 2008;29:9-11.
- 106. Wang QJ, Lei XY, Zheng LP, Wang JW. Molecular characterization of an elicitor-responsive 3-hydroxy-3-methylglutaryl coenzyme A reductase gene involved in oleanolic acid production in cell cultures of *Achyranthes bidentata*[J]. Plant Growth Regul 2016;81:1-9.
- 107. Lei XY, Wang QJ, Wang JW, Zheng LP. Cloning and characterization of an expansin gene ABEXP from *Achyranthes bidentata*. Plant Growth Regul 2017;83:479-87.
- 108. Mao P, Xia HL, Ye WC, Yuan XR. The experimental research on anticoagulant function of polysaccharides in *Achyranthes bidentata*.

Lishizhen Med Mater Med Res 2000;11:1075-6.

- 109. Si L, Huang SF, Li T, Guan SH. Effect of *Achyranthes bidentata* saponins on blood rheology index of acute blood stasis model rats. Clin J Tradit Chin Med 2007;19:356-8.
- 110. Xue SX, Jin LQ, Jia DM, Ye FQ. Effects of the derivatives of

Achyranthes bidentata polysaccharides on blood glucose and blood lipids in diabetic rats. Chin Pharm J 2009;44:107-10.

 Chao ZM, Shibusawa Y, Shindo H. Cytotoxicity of high-molecular extract from *Achyranthes bidentata* root and its chemical composition. Chin Pharm J 1999;34:299-301.